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Abstract – We investigate the effects of spin-flip scattering on the Hall transport and the spectral
properties of gapped Dirac fermions. We find that in the weak scattering regime, the Berry
curvature distribution is dramatically compressed in the electronic energy spectrum, becoming
singular at band edges. As a result, the Hall conductivity has a sudden jump (or drop) of e2/(2h)
when the Fermi energy sweeps across the band edges, and otherwise is a constant quantized in
units of e2/(2h). The spectral properties such as the density of states and the spin polarization
are also greatly enhanced near band edges. Possible experimental methods to detect these effects
are discussed.

Copyright c© EPLA, 2011

Introduction. – The Dirac fermion has found its
ubiquitous appearance in interesting physical systems
such as graphene [1] and topological insulators [2,3].
The most important feature of the Dirac fermion is
its strong (pseudo)spin-orbit coupling, which is directly
encoded in the Hamiltonian and underlies many unusual
effects. When a certain symmetry breaking mechanism is
introduced, a gap can be opened up at the Dirac point.
The gapped Dirac fermion (GDF) is in some sense more
interesting in that its electronic band develops a Berry
curvature gauge field [4,5] which acts like a magnetic
field in the momentum space, and deflects electron flow
in transverse directions leading to the anomalous Hall
effect [6].
Disorder scattering usually has strong effects on the Hall

transport even in the weak disorder limit when the system
is in a metallic state. So far, most studies of scattering
effects on Dirac fermions have focused on spin-independent
scattering. However, due to the strong spin-orbit coupling,
it is natural to expect that the carrier motion should have
a sensitive dependence on the change of spin state during
a scattering.
In this paper, we study the effects of spin-flip scatter-

ing on the properties of GDFs. Our work is motivated by
recent advances in creating GDF on the surface of topo-
logical insulators [7,8] and the ability of systematic control
of surface carrier density through doping or gating [9]. We

(a)E-mail: syang@ph.utexas.edu

show that in the weak scattering regime spin-flip scatter-
ing compresses the Berry curvature distribution dramati-
cally towards the band edge. Hence, whenever the Fermi
energy is tuned across a band edge, the Hall conduc-
tivity has a sudden change of e2/(2h), i.e. half of the
conductance quantum. Away from the band edges, the
Hall conductivity is a constant independent of the carrier
density. Since the Hall transport is central to several
exotic physical effects [10] proposed recently for topolog-
ical insulators, the discovery presented here is expected
to have important observable consequences. We also find
that spectral properties like the density of states (DOS)
and spin polarization, which are usually not very sensi-
tive to disorder scattering, get greatly enhanced near band
edges by the spin-flip scattering, which can be detected
by photoemission spectroscopy or tunneling spectroscopy
measurements.

Quantized Hall conductivity and Berry curva-
ture compression. – A GDF is described by the Hamil-
tonian

Ĥ0 = vFk · τ +∆τz, (1)

where vF is the Fermi velocity, k= (kx, ky, 0), and τ =
(τx, τy, τz) is a vector of Pauli matrices acting on the
spin degrees of freedom. Without the second term, the
Hamiltonian is for a massless Dirac fermion with a cone-
like energy dispersion. The term ∆τz induces a finite mass
and opens up an energy gap of 2∆ in the spectrum. Such
a term can be generated by breaking the time-reversal
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symmetry at the surface of a topological insulator, for
example, through magnetic doping [7] or coating with
insulating ferromagnetic films.
Because of the strong spin-orbit coupling and the

spin splitting induced by the mass term, an anomalous
Hall effect in the absence of external magnetic field is
expected. In the weak scattering regime, the anomalous
Hall conductivity has an important contribution σ0xy from
the momentum space Berry curvature of the spin-orbit
coupled bands [6]. It is known as the intrinsic contribution
because it is an intrinsic property of a crystal. For a two-
dimensional (2D) system the intrinsic contribution is given
by the integral of momentum space Berry curvature Ωnk
of all the occupied states |nk〉 (n is the band index),
σ0xy =− e

2

�

1
A

∑
nk Ωnkfnk, where A is the area of the 2D

system, fnk is the Fermi distribution function,

Ωnk =−
∑
n′ �=n

2 Im〈nk|vx|n′k〉〈n′k|vy|nk〉
(ωn′k−ωnk)2 , (2)

vi (= vF τi/� with i= x, y for GDF) is the velocity opera-
tor and �ωnk is the energy of the state |nk〉. The distri-
bution of Berry curvature in the energy spectrum can
be described by the density of Berry curvature Ω(ε)≡
1
A

∑
nk Ωnkδ(ε− �ωnk). Then the intrinsic contribution

can be put into the form σ0xy =− e
2

�

∫
dεΩ(ε)f(ε).

For GDFs, the density of Berry curvature and the
intrinsic contribution of Hall conductivity can be easily
calculated using the formulae above. The result is

Ω(ε) =− ∆
4πε2

sgn(ε)Θ(|ε| − |∆|), (3)

σ0xy(εF ) =−
e2

2h
[
∆

|εF |Θ(|εF | − |∆|)+ sgn(∆)Θ(|∆| − |εF |)],
(4)

where Θ(x) is the Heaviside step function and εF is the
Fermi energy. As shown by the blue curves in fig. 1, while
the density of Berry curvature has its maximum (or mini-
mum) value at band edges, its distribution spreads over
the whole energy spectrum, hence the value of σ0xy changes
gradually as a function of the Fermi energy. For each
band the total weight of Berry curvature corresponds to a
contribution of ±e2/(2h) to the Hall conductivity, where
the sign difference reflects the different helicities of the two
bands. It needs to be mentioned that the half-quantized
contribution from the filled lower band does not contra-
dict the well-known fact that the contribution from a
completely filled band must be integer quantized [6]. This
is because the Dirac model is energetically unbounded. It
can only serve as a low-energy effective model for any real
physical systems, where the evaluation of the contribution
from all the completely filled bands obviously has to go
beyond the effective model. On the other hand, it is crucial
to notice that the disorder-related contribution, which is
our focus in this paper, is tied to the Fermi surface hence
is well captured within such effective model.

(a)

(b)

Fig. 1: (Color online) (a) The anomalous Hall conductivity and
(b) the density of Berry curvature for the gapped Dirac fermion
(with ∆> 0) as a function of energy. The blue curve in (a) is for
the intrinsic contribution and the red curve is for a disordered
system with weak spin-flip scattering. The Berry curvature is
compressed by the scattering to be singular at band edges, as
shown schematically in (b).

The existence of disorder scattering is essential for
stabilizing the electron distribution under a drive field
and establishing the dynamic steady state. In the case of
the anomalous Hall effect, the role of disorder scattering
is especially important yet complicated. In the weak
scattering regime, when expanded in terms of the disorder
density ndis, the leading contribution to σxy is generally
of order n−1dis , known as the skew scattering contribution
which originates from the asymmetry in the scattering rate
and depends on the details of the disorder model [6]. The
next leading order (of n0dis dependence) consists of the
intrinsic contribution discussed above and the side jump
contribution [6]. The skew scattering contribution and the
side jump contribution arise from disorder scattering, they
are referred to as extrinsic contributions. The side jump
contribution is peculiar in that it arises from scattering
but is independent of both the scattering strength and
the disorder density. Due to its presence, even for disorder
models with vanishing skew scattering (such as Gaussian
disorder models), the Hall conductivity σxy in the weak
disorder limit ndis→ 0+ does not correspond to the value
of the intrinsic contribution σ0xy [6]. This is an important
point that needs to be emphasized.
In a recent study of the anomalous Hall effect [11], we

find that the extrinsic contributions to σxy depend sensi-
tively on the spin structure of disorder scattering. This
is understandable because the Hall transport is a result
of spin-orbit coupling, different actions on the spin state
during a scattering will also strongly affect the carrier’s
orbital motion. Here we are most interested in the effects
of spin-flip scattering on the gapped Dirac fermions. Such
kind of scattering can be modeled as a random poten-
tial U(r) =

∑
aB

a(r−Ra) · τ =Bx(r)τx+By(r)τy, with
Ba being a random in-plane vector. We assume that
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the random field satisfies the correlation 〈Bi(q)B∗j (q′)〉c =
ndisu

2δijδ(q− q′), where i, j ∈ {x, y}, Bi(q) is the Fourier
component of Bi(r), 〈· · ·〉c stands for disorder average and
u is the scattering strength. We assume that the system
has no preferred in-plane direction, such that the random
vector Ba is uniformly distributed in plane. Then the
third-order disorder correlation 〈UUU〉c must vanish iden-
tically. Because the skew scattering contribution depends
on the third-order correlation [6,12], this means that the
skew scattering process is forbidden for this kind of disor-
der. Therefore, the leading-order contribution to the Hall
conductivity comes from the intrinsic and the side jump
terms which are independent of scattering strength and
disorder density.
In the weak scattering regime, the Hall conductivity

can be evaluated perturbatively using the Kubo-Streda
formula [13]. The calculation has been detailed in our
previous work [11]. Here we quote the final result which is
that the side jump contribution is

σsjxy(εF ) =
e2

2h

∆

|εF |Θ(|εF | − |∆|), (5)

hence the total Hall conductivity is given by

σxy(εF )� σ0xy +σsjxy =−
e2

2h
sgn(∆)Θ(|∆| − |εF |). (6)

This is a very interesting result. As plotted in fig. 1(a),
σxy has a sudden jump or drop of half the conductance
quantum at the band edges. As soon as the Fermi energy
passes the band edge, the value of σxy becomes a constant
quantized in units of e2/2h. The effect of the spin-
flip scattering makes the anomalous Hall conductivity
quantized in the whole energy spectrum, which is different
from other types of disorders [11,12].
In this paper, we would like to promote another perspec-

tive on the unusual phenomena described by eq. (6).
Instead of starting from a clean system and treating disor-
ders as perturbations, we start directly from a disordered
system and try to generalize the concept of Berry curva-
ture for the disordered case. For each eigenstate |α〉 with
eigenenergy �ωα of the disordered system, we define its
Berry curvature as

Ωα ≡−
∑
β �=α

2 Im〈α|vx|β〉〈β|vy|α〉
(ωβ −ωα)2 . (7)

We further introduce a Berry curvature operator Ω̂≡∑
α Ωα|α〉〈α|, such that the density of Berry curvature

can be generalized as

Ω(ε)≡ 1
A
Tr
[
Ω̂ δ(ε−Ĥ)

]
. (8)

It follows from the Kubo formula that the Hall conductiv-
ity for disordered systems can be expressed as

σxy =−e
2

�

∫
dε〈Ω(ε)〉cf(ε), (9)

(a)

(b)

-0.5

0.0

Fig. 2: (Color online) Numerical result of (a) the Hall
conductivity and (b) the Berry curvature distribution for
increasing system sizes with Nk = 40, 50, 60, 70 averaged over
200, 100, 80, 50 samples, respectively. In the calculation we set
vF =∆= 1, the momentum cutoff Kc = 6, and the strength
|Bi(q)| (i= x, y) is a random number uniformly distributed
in an interval [0,W ] with W = 0.03 (accordingly, ndisu

2 �
W 2K2c /3∼ 0.01). The error bar stands for one standard
deviation.

with a disorder averaged density of Berry curvature. This
is an exact result. We again emphasize that although the
definition of generalized Berry curvature recovers that for
a perfect crystal when the eigenstates |α〉 are simply Bloch
states |nk〉, the weak disorder limit (ndis→ 0+) of eq. (9)
is not equal to the intrinsic contribution. It also contains
the side jump contribution (for vanishing skew scattering).
Mathematically, this is because the disorder-averaged
Berry curvature contains nontrivial vertex corrections
which do not vanish in the weak disorder limit. From eq.
(6) we find that in the weak disorder limit

〈Ω(ε)〉c =− 1
4π
sgn(ε∆)δ(|ε| − |∆|). (10)

As shown schematically in fig. 1(b), the density of Berry
curvature, which is originally spread over the energy
spectrum, gets compressed dramatically towards the band
edges by the scattering, while its total weight (± 1

4π for the
lower and the upper band, respectively) is kept unchanged.
Based on eqs. (7)–(9) we perform a numerical calcu-

lation to further confirm our analytic result. Due to the
particle-hole symmetry, σxy is a symmetric function with
respect to εF = 0, hence here we only focus on the posi-
tive energy range. The calculation is performed in momen-
tum space on disordered systems of size Nk ×Nk. Figure 2
shows the results for σxy and Ω with different system size
Nk. The physically meaningful value of a transport coeffi-
cient such as σxy corresponds to the thermodynamic limit
when Nk→∞. The result in fig. 2 indeed shows that the
density of Berry curvature is squeezed by the weak spin-
flip scattering to the upper-band bottom. Consequently
the contribution to the Hall conductivity from the upper
band approaches a half-quantized plateau in the energy
spectrum, which confirms our analytic result.
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To completely understand the microscopic mechanism
of this peculiar disorder effect is difficult. Nevertheless,
we notice that for the gapped Dirac fermion, the spin-
flip scattering has weak scattering rates near the band
bottom because states there have large spin z-components,
while large scattering rates occur for high energies where
the spins are more or less lying in the plane. Our result
indicates that the Berry curvature tends to be expelled
from the strong scattering region towards the weak scat-
tering region while keeping its total weight unchanged,
hence making the curvature distribution squeezed towards
band bottom. This is similar to the migration of the
Chern number carrying states driven by impurity scat-
tering observed in the quantum Hall effect [14,15].

Enhanced DOS and spin polarization. – Spectral
properties such as the DOS are usually considered to be
insensitive to weak disorder scattering. This is particularly
true when the DOS does not vary much in the energy
range under consideration, such as for a 2D free-electron
gas where the DOS is a constant. A GDF gas without
disorder has a DOS

ρ0(ε) =
|ε|
2πv2F

Θ(|ε| − |∆|). (11)

There are three salient features of this DOS that are
crucial for the effects to be discussed below: 1) ρ0 increases
linearly from the band edge; 2) ρ0 has a finite value
|∆|
2πv2F

at band edges; 3) ρ0 does not depend on the value

of the spin splitting ∆ as long as |ε|> |∆|. Figure 3(a)
shows the numerical result of the DOS for a clean system
together with the DOS for a disordered system with
spin-flip disorders. It is observed that spin-flip scattering
strongly enhances the DOS near the band edge, and
slightly decreases the DOS at large energies, as being
required by the conservation of the total number of states.
This effect can be qualitatively understood from the

self-energy correction due to scattering. In the Born
approximation, (assuming ε >∆> 0 in the following),
the 2× 2 retarded self-energy is given by ΣR =
1
A

∑
k〈UGR0 (k, ε)U〉c, with

ReΣR(ε) =−ndisu
2

2πv2F
ln

∣∣∣∣ ε
2− ε2c
ε2−∆2

∣∣∣∣ (ετ0−∆τz), (12)

and ImΣR(ε) =−ndisu2
2v2F
(ετ0−∆τz), where εc is the energy

cutoff and τ0 is the 2× 2 identity matrix. While the
imaginary part of the self-energy only contributes to a
small level broadening in the weak scattering regime, the
real part has a large magnitude near the band edge and
diverges logarithmically as ε→∆. In fact, this disorder-
induced singularity is a generic feature for systems having
a finite (unperturbed) DOS at the band edge, as is the
case for the GDF system.
Thermodynamic properties can be extracted from the

Green function GR = (ε−H0−ΣR)−1. From eq. (12), the
self-energy only corrects the energy argument ε and spin

(a)

(b)

Fig. 3: (Color online) Numerical results of (a) the DOS and
(b) the spin polarization Sz for increasing disorder strength
with W = 0.02, 0.04, 0.06 with each data point averaged over
50 samples, where W is defined in the caption of fig. 2. In the
calculation, we set Nk = 70, and vF =∆= 1.

splitting ∆ in GR. It follows that the disordered DOS can
be approximated as

ρ(ε)� ρ0[ε(1+λ),∆(1+λ)], (13)

with the right-hand side standing for the DOS at energy
ε(1+λ) for a clean GDF system with ∆ replaced by ∆(1+

λ), where λ= ndisu
2

2πv2F
ln
∣∣∣ ε2−ε2cε2−∆2

∣∣∣ is the prefactor appearing
in eq. (12). Near the band edge, λ is a positive number,
hence ρ(ε)� (1+λ)ρ0(ε) is enhanced by a factor of (1+λ)
compared with the clean case1. Now it is clear that
a strong enhancement of DOS by scattering requires
the original DOS has a large variation on the energy
scale of λ∆. Therefore, such effect does not occur for a
conventional 2D free-electron gas, and although the GDF
near the band edge resembles the 2D free-electron gas,
the self-energy correction makes the Dirac behavior at
higher energies relevant. Similarly, the spin polarization
Sz(ε) =− 1

πA
ImTr[τzG

R(ε)] is also enhanced at the band
edge by the factor (1+λ), as shown in fig. 3(b).

Discussion. – The exotic effects reported here arise
from the interplay between the GDF and the spin-flip
scattering. There are two important properties of GDFs
underlying these effects: the Berry curvature and the
unusual DOS. Disorder scattering modifies these funda-
mental properties in the spectrum, thereby strongly influ-
ences the system behavior.
Spin-conserving scattering such as B0(r)τ0 or Bz(r)τz

also affects the anomalous Hall transport of the GDF

1A more careful evaluation leads to the result that ρ(ε) =

ρ0(ε)
[
1+ ndisu

2

2πv2
F

(
ln
∣∣∣ ε
2−ε2c
ε2−∆2

∣∣∣− 2
)]
, which shows that the curves

of ρ(ε) and ρ0(ε) have a crossing point at the energy ε∗ when
ln
∣∣∣ ε
2
∗−ε2c
ε2∗−∆2

∣∣∣− 2 = 0. With the parameter values in our numerical
calculation, we find that ε∗ = 2.55 which agrees very well with the
result in fig. 3(a).

67001-p4



Effects of spin-flip scattering on gapped Dirac fermions

system in metallic state. In contrast with the spin-flip
scattering, their skew scattering contribution is in general
nonvanishing. Their side jump contributions are also
distinct from that of the spin-flip scattering [11,12]. In
particular, the Berry curvature is not compressed into
a small region in the spectrum. The combined effects
of different kinds of scattering would depend on the
competition between them [11,16]. As for the disorder-
modified DOS, the spin-conserving scattering has a similar
effect as the spin-flip scattering. This can be understood by
noticing that the self-energy correction for spin-conserving
scattering only differs from eq. (12) by a sign change of ∆.
Because ρ0 does not depend on ∆ (for energies within
the bands), the result is similar to that for the spin-
flip scattering. Meanwhile, the spin polarization becomes
Sz(ε)� (1−λ)Sz0 (ε). In the energy range where λ> 1, the
spin polarization can even have a sign change.
GDF has been realized on the surface of topological

insulators [7]. This is partly motivated by the possibil-
ity to achieve a half-quantized anomalous Hall effect by
tuning the Fermi level into the surface band gap [3,17].
In contrast, our focus here is instead on the energy range
outside the gap. We notice that for a purely 2D system
with embedded gapped Dirac spectrum, it is possible to
realize a half-quantized anomalous Hall effect in the metal-
lic state with the help of spin-flip scattering. For exam-
ple, consider a HamiltonianH0 = vF (sin kxτx+sin kyτy)+
(∆+2− cos kx− cos ky)τz (∆> 0) which corresponds to
a tight-binding lattice model proposed to model the Mn-
doped HgTe/CdTe quantum wells [18]. It has a direct gap
at the Γ-point of the Brillouin zone. The low-energy effec-
tive model near the gap is just that for a GDF. As we
mentioned before, the contribution to the Hall conductiv-
ity from the completely filled lower band (or any remote
valence band) must be integer quantized. Therefore, once
the Fermi energy is slightly above the upper-band bottom
and spin-flip scattering is turned on, an e2/(2h) contribu-
tion arises from the upper-band bottom making the total
Hall conductivity half-quantized. In fact, the noninteger
value of Hall conductivity dictates that the system must
be conducting [19]. The effect itself would be very interest-
ing since it realizes a fractional quantized Hall effect for
noninteracting electrons in a metallic state, plus it does
not require the completely filled valence bands to have a
nontrivial topology, i.e. with a nonzero Chern number [5].
Finally, we briefly comment on the possible experi-

mental methods to detect the effects studied here on
the surface of topological insulators. The surface band
gap can be opened by depositing an ultrathin insulating
ferromagnetic film on top of a topological insulator such
that a proximity-induced exchange coupling can be intro-
duced. Spin-flip scattering can be realized by thermally
excited spin waves in the ferromagnetic film. However, to
make spin wave scattering dominate over other scatter-
ing processes is a nontrivial task. It requires a temper-
ature range where spin wave excitation dominates over
phonon excitation and improved sample quality such that

very few impurities are present near the interface. Ferro-
magetic insulating materials such as EuS and EuO with
the Curie temperature much lower than the Debye temper-
ature are possible candidates. The Hall conductivity can
be measured through standard multi-terminal setup. The
sudden change of Hall conductivity at band edges will
also manifest itself in the signal of magneto-electric or
magneto-optic effects [10]. Enhanced DOS and spin polar-
ization at band edges can be directly detected through the
photoemission spectroscopy or the tunneling spectroscopy
measurements, which should be much easier.
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